\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx\) [213]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 250 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=-\frac {3 (121 A-21 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 \sqrt {2} a^{7/2} d}-\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}}-\frac {(199 A-43 B) \sin (c+d x)}{192 a^2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(691 A-103 B) \sin (c+d x)}{192 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

-3/128*(121*A-21*B)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(7/2)/d*2
^(1/2)-1/6*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(7/2)/cos(d*x+c)^(1/2)-1/48*(19*A-7*B)*sin(d*x+c)/a/d/(a+a*cos(
d*x+c))^(5/2)/cos(d*x+c)^(1/2)-1/192*(199*A-43*B)*sin(d*x+c)/a^2/d/(a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2)+1/1
92*(691*A-103*B)*sin(d*x+c)/a^3/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3057, 3063, 12, 2861, 211} \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=-\frac {3 (121 A-21 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {(691 A-103 B) \sin (c+d x)}{192 a^3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {(199 A-43 B) \sin (c+d x)}{192 a^2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}-\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{7/2}} \]

[In]

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(7/2)),x]

[Out]

(-3*(121*A - 21*B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(64*S
qrt[2]*a^(7/2)*d) - ((A - B)*Sin[c + d*x])/(6*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(7/2)) - ((19*A - 7*B)
*Sin[c + d*x])/(48*a*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(5/2)) - ((199*A - 43*B)*Sin[c + d*x])/(192*a^2
*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)) + ((691*A - 103*B)*Sin[c + d*x])/(192*a^3*d*Sqrt[Cos[c + d*x
]]*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}+\frac {\int \frac {\frac {1}{2} a (13 A-B)-3 a (A-B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx}{6 a^2} \\ & = -\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}}+\frac {\int \frac {\frac {3}{4} a^2 (41 A-5 B)-a^2 (19 A-7 B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx}{24 a^4} \\ & = -\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}}-\frac {(199 A-43 B) \sin (c+d x)}{192 a^2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\frac {1}{8} a^3 (691 A-103 B)-\frac {1}{4} a^3 (199 A-43 B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{48 a^6} \\ & = -\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}}-\frac {(199 A-43 B) \sin (c+d x)}{192 a^2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(691 A-103 B) \sin (c+d x)}{192 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {\int -\frac {9 a^4 (121 A-21 B)}{16 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{24 a^7} \\ & = -\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}}-\frac {(199 A-43 B) \sin (c+d x)}{192 a^2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(691 A-103 B) \sin (c+d x)}{192 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(3 (121 A-21 B)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{128 a^3} \\ & = -\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}}-\frac {(199 A-43 B) \sin (c+d x)}{192 a^2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(691 A-103 B) \sin (c+d x)}{192 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {(3 (121 A-21 B)) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 a^2 d} \\ & = -\frac {3 (121 A-21 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 \sqrt {2} a^{7/2} d}-\frac {(A-B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{7/2}}-\frac {(19 A-7 B) \sin (c+d x)}{48 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}}-\frac {(199 A-43 B) \sin (c+d x)}{192 a^2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(691 A-103 B) \sin (c+d x)}{192 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.91 (sec) , antiderivative size = 798, normalized size of antiderivative = 3.19 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=-\frac {B \cos ^7\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^6\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (141-518 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+575 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )-206 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-\frac {189 \text {arctanh}\left (\sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \cos ^6\left (\frac {1}{2} (c+d x)\right )}{\sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}}\right )}{24 d (a (1+\cos (c+d x)))^{7/2} \sqrt {1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}+\frac {2 A \cos ^7\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^6\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {16 \cos ^8\left (\frac {1}{2} (c+d x)\right ) \, _5F_4\left (2,2,2,2,\frac {5}{2};1,1,1,\frac {13}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{3465 \left (-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )}-\frac {\csc ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2 \sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (105 \text {arctanh}\left (\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (2187-12908 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+27986 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )-26380 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )+8752 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-229635+2120790 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-8267707 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+17646926 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-22251094 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )+16548816 \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )-6712984 \sin ^{12}\left (\frac {c}{2}+\frac {d x}{2}\right )+1144608 \sin ^{14}\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )}{1680}\right )}{d (a (1+\cos (c+d x)))^{7/2} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{3/2}} \]

[In]

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(7/2)),x]

[Out]

-1/24*(B*Cos[c/2 + (d*x)/2]^7*Sec[(c + d*x)/2]^6*Sin[c/2 + (d*x)/2]*(141 - 518*Sin[c/2 + (d*x)/2]^2 + 575*Sin[
c/2 + (d*x)/2]^4 - 206*Sin[c/2 + (d*x)/2]^6 - (189*ArcTanh[Sqrt[-(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/
2]^2))]]*Cos[(c + d*x)/2]^6)/Sqrt[-(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]))/(d*(a*(1 + Cos[c + d
*x]))^(7/2)*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]) + (2*A*Cos[c/2 + (d*x)/2]^7*Sec[(c + d*x)/2]^6*Sin[c/2 + (d*x)/2
]*((16*Cos[(c + d*x)/2]^8*HypergeometricPFQ[{2, 2, 2, 2, 5/2}, {1, 1, 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*S
in[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^2)/(3465*(-1 + 2*Sin[c/2 + (d*x)/2]^2)) - (Csc[c/2 + (d*x)/2]^10*(1 -
 2*Sin[c/2 + (d*x)/2]^2)^2*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(105*ArcTanh[Sqrt[Sin[c/2
+ (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Cos[(c + d*x)/2]^6*(2187 - 12908*Sin[c/2 + (d*x)/2]^2 + 27986*Sin
[c/2 + (d*x)/2]^4 - 26380*Sin[c/2 + (d*x)/2]^6 + 8752*Sin[c/2 + (d*x)/2]^8) + Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 +
2*Sin[c/2 + (d*x)/2]^2)]*(-229635 + 2120790*Sin[c/2 + (d*x)/2]^2 - 8267707*Sin[c/2 + (d*x)/2]^4 + 17646926*Sin
[c/2 + (d*x)/2]^6 - 22251094*Sin[c/2 + (d*x)/2]^8 + 16548816*Sin[c/2 + (d*x)/2]^10 - 6712984*Sin[c/2 + (d*x)/2
]^12 + 1144608*Sin[c/2 + (d*x)/2]^14)))/1680))/(d*(a*(1 + Cos[c + d*x]))^(7/2)*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3
/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(602\) vs. \(2(213)=426\).

Time = 8.03 (sec) , antiderivative size = 603, normalized size of antiderivative = 2.41

method result size
parts \(\frac {A \left (1089 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+691 \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+4356 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+1874 \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+6534 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+1599 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+4356 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+384 \sqrt {2}\, \sin \left (d x +c \right )+1089 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{384 d \left (1+\cos \left (d x +c \right )\right )^{4} \sqrt {\cos \left (d x +c \right )}\, a^{4}}-\frac {B \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {a}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, \left (8 \left (\csc ^{5}\left (d x +c \right )\right ) \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (1-\cos \left (d x +c \right )\right )^{5}+46 \left (\csc ^{3}\left (d x +c \right )\right ) \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (1-\cos \left (d x +c \right )\right )^{3}+141 \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+189 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {2}}{384 d \sqrt {-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, a^{4}}\) \(603\)
default \(\frac {-\frac {A {\left (-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1\right )}^{\frac {3}{2}} \sqrt {2}\, \sqrt {\frac {a}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, \left (-8 \left (\csc ^{7}\left (d x +c \right )\right ) \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (1-\cos \left (d x +c \right )\right )^{7}-62 \left (\csc ^{5}\left (d x +c \right )\right ) \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (1-\cos \left (d x +c \right )\right )^{5}-299 \left (\csc ^{3}\left (d x +c \right )\right ) \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (1-\cos \left (d x +c \right )\right )^{3}-1089 \left (\csc ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1137 \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+1089 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right )}{384 {\left (-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\right )}^{\frac {3}{2}} \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1\right ) a \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1\right ) \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right )}+\frac {B \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {2}\, \sqrt {\frac {a}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, \left (-8 \left (\csc ^{5}\left (d x +c \right )\right ) \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (1-\cos \left (d x +c \right )\right )^{5}-46 \left (\csc ^{3}\left (d x +c \right )\right ) \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (1-\cos \left (d x +c \right )\right )^{3}-141 \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-189 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right )}{384 \sqrt {-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, a}}{a^{3} d}\) \(704\)

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/384*A/d*(1089*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))*cos(d*x+c)^4+691*2^(1/2)*cos(d
*x+c)^3*sin(d*x+c)+4356*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+1874*2^(1
/2)*cos(d*x+c)^2*sin(d*x+c)+6534*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*arcsin(cot(d*x+c)-csc(d*x+c))+
1599*sin(d*x+c)*cos(d*x+c)*2^(1/2)+4356*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x
+c))+384*2^(1/2)*sin(d*x+c)+1089*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c)))*(a*(1+cos(d*
x+c)))^(1/2)/(1+cos(d*x+c))^4/cos(d*x+c)^(1/2)*2^(1/2)/a^4-1/384*B/d/(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(
d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*(a/(csc(d*x+c)^2*(1-cos(d*x+c))^2
+1))^(1/2)*(8*csc(d*x+c)^5*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*(1-cos(d*x+c))^5+46*csc(d*x+c)^3*(-csc(d*x
+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*(1-cos(d*x+c))^3+141*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*(csc(d*x+c)-cot(
d*x+c))+189*arcsin(cot(d*x+c)-csc(d*x+c)))*2^(1/2)/a^4

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.19 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=-\frac {9 \, \sqrt {2} {\left ({\left (121 \, A - 21 \, B\right )} \cos \left (d x + c\right )^{5} + 4 \, {\left (121 \, A - 21 \, B\right )} \cos \left (d x + c\right )^{4} + 6 \, {\left (121 \, A - 21 \, B\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (121 \, A - 21 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (121 \, A - 21 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, {\left ({\left (691 \, A - 103 \, B\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (937 \, A - 133 \, B\right )} \cos \left (d x + c\right )^{2} + 39 \, {\left (41 \, A - 5 \, B\right )} \cos \left (d x + c\right ) + 384 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{384 \, {\left (a^{4} d \cos \left (d x + c\right )^{5} + 4 \, a^{4} d \cos \left (d x + c\right )^{4} + 6 \, a^{4} d \cos \left (d x + c\right )^{3} + 4 \, a^{4} d \cos \left (d x + c\right )^{2} + a^{4} d \cos \left (d x + c\right )\right )}} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

-1/384*(9*sqrt(2)*((121*A - 21*B)*cos(d*x + c)^5 + 4*(121*A - 21*B)*cos(d*x + c)^4 + 6*(121*A - 21*B)*cos(d*x
+ c)^3 + 4*(121*A - 21*B)*cos(d*x + c)^2 + (121*A - 21*B)*cos(d*x + c))*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(
d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2*((691*A - 103*B
)*cos(d*x + c)^3 + 2*(937*A - 133*B)*cos(d*x + c)^2 + 39*(41*A - 5*B)*cos(d*x + c) + 384*A)*sqrt(a*cos(d*x + c
) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^4*d*cos(d*x + c)^5 + 4*a^4*d*cos(d*x + c)^4 + 6*a^4*d*cos(d*x + c)^
3 + 4*a^4*d*cos(d*x + c)^2 + a^4*d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(7/2),x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {7}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(7/2)*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{7/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{7/2}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(7/2)),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(7/2)), x)